1. Developers Should Use the Following Tools in the Development Environment:
a) [Prettier]: A tool that automatically formats code, ensuring consistent 	style across the project.
b) [ESLint]: A powerful tool for identifying and fixing common issues in 		JavaScript code.
[bookmark: _GoBack]	C) InFeature [Huskey]: is used for setting up Git hooks, which automate tasks 	like running tests or linting code before commits or pushes, ensuring code 	quality throughout development.
Optional:
a) [Git Lens]: A powerful extension for Visual Studio Code, enhancing Git 		workflow by providing advanced features and insights within the editor.

JS and JSX Standardization:
2. Form handling should be managed by control components. Developers should use libraries(Formik and Yup) or formData as per project requirements.
3. JSX file names should begin with a capital letter (pascal case), while folder and JS file names should be in camel case.
4. Developers should use ‘let and const’ to declare variables, functions, etc. The variable names should be in camelCase.
5. Developers should use custom hooks/function if the functionality is repeated.
6. Usage of ES6 functions and keywords as much as we can.
7. Usage of Ternary operator (ES6) if condition matched.
8. Error handling (try-catch) compulsory.
9. Meaningful names for variables and functions, and avoid spelling errors.
10. Explanatory comments for complex logic/algorithms.
11. Developers should follow React and software development best practices:
a) Developers should adhere to the DRY (Don't Repeat Yourself) methodology.
b) Developers should split the code according to the requirements.

Html and Css Standardization:
12. Custom className should be in block/snake case.
a) Ex: ’nav_hero_section’,’fotter_section’
13. Developers should double-check classNames before writing styles or using in-built styles to ensure there are no CSS regressions.
14. Avoid Using 0px Instead of 0 in stylesheet.
Reason - totally unnecessary which increases your file sizes for no reason.
15. Avoid inline Style/CSS at max.
16. Use Global Generic style classes as much as we can.
Reason - shorten the codebase, easy to debug and fair usage of code
For example - for align center we can create and use class like below -
.tc {text-align: center}
17. Avoid Internal style code, it affects SEO friendly websites.
18. Use Block v/s Inline HTML elements wisely and accordingly.
19. Usage of Semantic Tags instead of repeating Div and span again and again for better visibility in code and SEO prospective too.
20. Don’t use !important; in Code anywhere.
Reason - It’s completely damage the priority level of your style, if 	its 		very urgent then use it for component level only, don’t ever 	use !Important in global style.
21. Should be Generic Code.
a) Toaster Options
b) Logout functionality
c) API calls error handling - middleware
d) Helper functions
e) !important in css - minimum
22. Usage of Alt Attribute in Img
Best practice for SEO friendly website and in case Image is 	broken from 	server.

Git and Build Standardization:
23. PR merging Process:
	[image: IMG_256]

24. Developers must ensure that all comments are removed before raising a PR. If commented code is necessary for the feature, developers should provide an explanatory comment.
25. Implementation of CI/CD for the development server reduces developer time in generating builds and deployments, thus enhancing developer productivity.

26. Standardization of Git Branches, Commits, and PR Messages:
a) Branches should be named in a structured manner to convey 	their purpose:
 - Case 1: For bug fixes, the branch name should start with 			'bug-fix/' followed by the feature, module, or ticket ID.
 - Case 2: For UI development, the branch name should start with 'UI/' 		followed by the feature, module, or ticket ID.	
- Case 3: For API integration, the branch name should start with 'API/' 		followed by the feature, module, or ticket ID.
- Case 4: For fixing critical bugs, the branch name should 	start with 'hot-	bug-fix/' followed by the feature, module or ticket ID.
b) Developers should provide a description for every PR.
c) Developers should include proper comments with each PR.

image1.png
Developer raise PR

Code is good

> TL Merge the code |4

Code is not good

Developer fix the code

and raise PR again L review the

code again

comment in
PR





