
JavaScript Interview Questions

To view the live version of the
page, click here.

© Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions for Freshers
1. What are the different data types present in javascript?

2. Explain Hoisting in javascript.

3. Why do we use the word “debugger” in javascript?

4. Difference between “ == “ and “ === “ operators.

5. Difference between var and let keyword in javascript.

6. Explain Implicit Type Coercion in javascript.

7. Is javascript a statically typed or a dynamically typed language?

8. What is NaN property in JavaScript?

9. Explain passed by value and passed by reference.

10. What is an Immediately Invoked Function in JavaScript?

11. What do you mean by strict mode in javascript and characteristics of javascript
strict-mode?

12. Explain Higher Order Functions in javascript.

13. Explain “this” keyword.

14. What do you mean by Self Invoking Functions?

15. Explain call(), apply() and, bind() methods.

16. What is the difference between exec () and test () methods in javascript?

17. What is currying in JavaScript?

18. What are some advantages of using External JavaScript?

19. Explain Scope and Scope Chain in javascript.

20. Explain Closures in JavaScript.

Page 1 © Copyright by Interviewbit

Contents

JavaScript Interview Questions

JavaScript Interview Questions for
Freshers (.....Continued)

21. Mention some advantages of javascript.

22. What are object prototypes?

23. What are callbacks?

24. What are the types of errors in javascript?

25. What is memoization?

26. What is recursion in a programming language?

27. What is the use of a constructor function in javascript?

28. What is DOM?

29. Which method is used to retrieve a character from a certain index?

30. What do you mean by BOM?

31. What is the distinction between client-side and server-side JavaScript?

JavaScript Interview Questions for Experienced
32. What are arrow functions?

33. What do mean by prototype design pattern?

34. Differences between declaring variables using var, let and const.

35. What is the rest parameter and spread operator?

36. In JavaScript, how many different methods can you make an object?

37. What is the use of promises in javascript?

38. What are classes in javascript?

Page 2 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

JavaScript Interview Questions for
Experienced (.....Continued)

39. What are generator functions?

40. Explain WeakSet in javascript.

41. Why do we use callbacks?

42. Explain WeakMap in javascript.

43. What is Object Destructuring?

44. Difference between prototypal and classical inheritance

45. What is a Temporal Dead Zone?

46. What do you mean by JavaScript Design Patterns?

47. Is JavaScript a pass-by-reference or pass-by-value language?

48. Difference between Async/Await and Generators usage to achieve the same
functionality.

49. What are the primitive data types in JavaScript?

50. What is the role of deferred scripts in JavaScript?

51. What has to be done in order to put Lexical Scoping into practice?

52. What is the purpose of the following JavaScript code?

JavaScript Coding Interview Questions
53. Guess the outputs of the following codes:

54. Guess the outputs of the following code:

55. Guess the output of the following code:

56. Guess the outputs of the following code:

Page 3 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

JavaScript Coding Interview Questions (.....Continued)

57. Guess the outputs of the following code:

58. Write a function that performs binary search on a sorted array.

59. Implement a function that returns an updated array with r right rotations on an
array of integers a .

60. Write the code for dynamically inserting new components.

61. Write the code given If two strings are anagrams of one another, then return
true.

62. Write the code to find the vowels

63. In JavaScript, how do you turn an Object into an Array []?

64. What is the output of the following code?

Page 4 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript, created by Brendan Eich in 1995, is one of the most widely used web
development languages. It was designed to build dynamic web pages at first. A script
is a JS program that may be added to the HTML of any web page. When the page
loads, these scripts execute automatically.

A language that was originally designed to build dynamic web pages may now be run
on the server and on almost any device that has the JavaScript Engine installed.

A�er HTML and CSS, JavaScript is the third biggest web technology. JavaScript is a
scripting language that may be used to construct online and mobile apps, web
servers, games, and more. JavaScript is an object-oriented programming language
that is used to generate websites and applications. It was created with the intention
of being used in a browser. Even today, the server-side version of JavaScript known as
Node.js may be used to create online and mobile apps, real-time applications, online
streaming applications, and videogames. Javascript frameworks, o�en known as
inbuilt libraries, may be used to construct desktop and mobile programs. Developers
may save a lot of time on monotonous programming jobs by using these code
libraries, allowing them to focus on the production work of development.

Page 5 © Copyright by Interviewbit

Let's get Started

https://www.scaler.com/topics/javascript/
https://www.interviewbit.com/blog/javascript-frameworks/

JavaScript Interview Questions

The InterviewBit team has compiled a thorough collection of top Javascript
Interview Questions and Answers to assist you in acing your interview and landing
your desired job as a Javascript Developer.

JavaScript Interview Questions for Freshers
1. What are the different data types present in javascript?

To know the type of a JavaScript variable, we can use the typeof operator.

1. Primitive types

String - It represents a series of characters and is written with quotes. A string can be
represented using a single or a double quote.

Example :

var str = "Vivek Singh Bisht"; //using double quotes
var str2 = 'John Doe'; //using single quotes

Number - It represents a number and can be written with or without decimals.
Example :

Page 6 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

var x = 3; //without decimal
var y = 3.6; //with decimal

BigInt - This data type is used to store numbers which are above the limitation
of the Number data type. It can store large integers and is represented by adding
“n” to an integer literal.

Example :

var bigInteger = 234567890123456789012345678901234567890;

Boolean - It represents a logical entity and can have only two values : true or
false. Booleans are generally used for conditional testing.

Example :

var a = 2;
var b = 3;
var c = 2;
(a == b) // returns false
(a == c) //returns true

Undefined - When a variable is declared but not assigned, it has the value of
undefined and it’s type is also undefined.

Example :

var x; // value of x is undefined
var y = undefined; // we can also set the value of a variable as undefined

Null - It represents a non-existent or a invalid value.
Example :

var z = null;

Page 7 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Symbol - It is a new data type introduced in the ES6 version of javascript. It is
used to store an anonymous and unique value.

Example :

var symbol1 = Symbol('symbol');

typeof of primitive types :

typeof "John Doe" // Returns "string"
typeof 3.14 // Returns "number"
typeof true // Returns "boolean"
typeof 234567890123456789012345678901234567890n // Returns bigint
typeof undefined // Returns "undefined"
typeof null // Returns "object" (kind of a bug in JavaScript)
typeof Symbol('symbol') // Returns Symbol

2. Non-primitive types

Primitive data types can store only a single value. To store multiple and complex
values, non-primitive data types are used.
Object - Used to store collection of data.
Example:

// Collection of data in key-value pairs

var obj1 = {
 x: 43,
 y: "Hello world!",
 z: function(){
 return this.x;
 }
}

// Collection of data as an ordered list

var array1 = [5, "Hello", true, 4.1];

Page 8 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Note- It is important to remember that any data type that is not a primitive
data type, is of Object type in javascript.

2. Explain Hoisting in javascript.

Hoisting is the default behaviour of javascript where all the variable and function
declarations are moved on top.

This means that irrespective of where the variables and functions are declared, they
are moved on top of the scope. The scope can be both local and global.

Example 1:

Example 2:

Page 9 © Copyright by Interviewbit

hoistedVariable = 3;
console.log(hoistedVariable); // outputs 3 even when the variable is declared after it
var hoistedVariable;

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Example 3:

// Hoisting takes place in the local scope as well
function doSomething(){
 x = 33;
 console.log(x);
 var x;
}

doSomething(); // Outputs 33 since the local variable “x” is hoisted inside the local
scope

Note - Variable initializations are not hoisted, only variable declarations are
hoisted:

Note - To avoid hoisting, you can run javascript in strict mode by using “use
strict” on top of the code:

"use strict";
x = 23; // Gives an error since 'x' is not declared
var x;

3. Why do we use the word “debugger” in javascript?

Page 10 © Copyright by Interviewbit

hoistedFunction(); // Outputs " Hello world! " even when the function is declared afte

function hoistedFunction(){
 console.log(" Hello world! ");
}

var x;
console.log(x); // Outputs "undefined" since the initialization of "x" is not hoisted
x = 23;

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

The debugger for the browser must be activated in order to debug the code. Built-in
debuggers may be switched on and off, requiring the user to report faults. The
remaining section of the code should stop execution before moving on to the next
line while debugging.

4. Difference between “ == “ and “ === “ operators.

Both are comparison operators. The difference between both the operators is that
“==” is used to compare values whereas, “ === “ is used to compare both values and
types.

Example:

var x = 2;
var y = "2";
(x == y) // Returns true since the value of both x and y is the same
(x === y) // Returns false since the typeof x is "number" and typeof y is "string"

5. Difference between var and let keyword in javascript.

Some differences are

1. From the very beginning, the 'var' keyword was used in JavaScript programming
whereas the keyword 'let' was just added in 2015.

2. The keyword 'Var' has function scope. Anywhere in the function, the variable
specified using var is accessible but in ‘let’ the scope of a variable declared with
the 'let' keyword is limited to the block in which it is declared. Let's start with a
Block Scope.

3. 'var' declares a variable that will be hoisted but 'let' declares a variable that will
be hoisted.

6. Explain Implicit Type Coercion in javascript.

Implicit type coercion in javascript is the automatic conversion of value from one
data type to another. It takes place when the operands of an expression are of
different data types.

String coercion

Page 11 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

String coercion takes place while using the ‘ + ‘ operator. When a number is added to
a string, the number type is always converted to the string type.

Example 1:

var x = 3;
var y = "3";
x + y // Returns "33"

Example 2:

var x = 24;
var y = "Hello";
x + y // Returns "24Hello";

Note - ‘ + ‘ operator when used to add two numbers, outputs a number. The
same ‘ + ‘ operator when used to add two strings, outputs the concatenated
string:

var name = "Vivek";
var surname = " Bisht";
name + surname // Returns "Vivek Bisht"

Let’s understand both the examples where we have added a number to a string,

When JavaScript sees that the operands of the expression x + y are of different types (
one being a number type and the other being a string type), it converts the number
type to the string type and then performs the operation. Since a�er conversion, both
the variables are of string type, the ‘ + ‘ operator outputs the concatenated string
“33” in the first example and “24Hello” in the second example.

Page 12 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Note - Type coercion also takes place when using the ‘ - ‘ operator, but the
difference while using ‘ - ‘ operator is that, a string is converted to a number
and then subtraction takes place.

Boolean Coercion
Boolean coercion takes place when using logical operators, ternary operators, if
statements, and loop checks. To understand boolean coercion in if statements and
operators, we need to understand truthy and falsy values.

Truthy values are those which will be converted (coerced) to true. Falsy values are
those which will be converted to false.

All values except false, 0, 0n, -0, “”, null, undefined, and NaN are truthy values.

If statements:

Example:

Logical operators:

Page 13 © Copyright by Interviewbit

var x = 3;
Var y = "3";
x - y //Returns 0 since the variable y (string type) is converted to a number type

var x = 0;
var y = 23;

if(x) { console.log(x) } // The code inside this block will not run since the value o

if(y) { console.log(y) } // The code inside this block will run since the value of y

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Logical operators in javascript, unlike operators in other programming languages, do
not return true or false. They always return one of the operands.

OR (| |) operator - If the first value is truthy, then the first value is returned.
Otherwise, always the second value gets returned.

AND (&&) operator - If both the values are truthy, always the second value is
returned. If the first value is falsy then the first value is returned or if the second value
is falsy then the second value is returned.

Example:

Equality Coercion

Page 14 © Copyright by Interviewbit

var x = 220;
var y = "Hello";
var z = undefined;

x | | y // Returns 220 since the first value is truthy

x | | z // Returns 220 since the first value is truthy

x && y // Returns "Hello" since both the values are truthy

y && z // Returns undefined since the second value is falsy

if(x && y){
 console.log("Code runs"); // This block runs because x && y returns "Hello" (Truthy)
}

if(x || z){
 console.log("Code runs"); // This block runs because x || y returns 220(Truthy)
}

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Equality coercion takes place when using ‘ == ‘ operator. As we have stated before

The ‘ == ‘ operator compares values and not types.

While the above statement is a simple way to explain == operator, it’s not completely
true

The reality is that while using the ‘==’ operator, coercion takes place.

The ‘==’ operator, converts both the operands to the same type and then compares
them.

Example:

Coercion does not take place when using the ‘===’ operator. Both operands are not
converted to the same type in the case of ‘===’ operator.

Example:

7. Is javascript a statically typed or a dynamically typed
language?

JavaScript is a dynamically typed language. In a dynamically typed language, the
type of a variable is checked during run-time in contrast to a statically typed
language, where the type of a variable is checked during compile-time.

Page 15 © Copyright by Interviewbit

var a = 12;
var b = "12";
a == b // Returns true because both 'a' and 'b' are converted to the same type and then

var a = 226;
var b = "226";

a === b // Returns false because coercion does not take place and the operands are of

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Since javascript is a loosely(dynamically) typed language, variables in JS are not
associated with any type. A variable can hold the value of any data type.

For example, a variable that is assigned a number type can be converted to a string
type:

var a = 23;
var a = "Hello World!";

8. What is NaN property in JavaScript?

NaN property represents the “Not-a-Number” value. It indicates a value that is not a
legal number.

typeof of NaN will return a Number.

To check if a value is NaN, we use the isNaN() function,

Note- isNaN() function converts the given value to a Number type, and then
equates to NaN.

Page 16 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

9. Explain passed by value and passed by reference.

In JavaScript, primitive data types are passed by value and non-primitive data
types are passed by reference.

For understanding passed by value and passed by reference, we need to understand
what happens when we create a variable and assign a value to it,

var x = 2;

In the above example, we created a variable x and assigned it a value of “2”. In the
background, the “=” (assign operator) allocates some space in the memory, stores
the value “2” and returns the location of the allocated memory space. Therefore, the
variable x in the above code points to the location of the memory space instead of
pointing to the value 2 directly.

Assign operator behaves differently when dealing with primitive and non-primitive
data types,

Assign operator dealing with primitive types:

Page 17 © Copyright by Interviewbit

isNaN("Hello") // Returns true
isNaN(345) // Returns false
isNaN('1') // Returns false, since '1' is converted to Number type which results in 0
isNaN(true) // Returns false, since true converted to Number type results in 1 (a numb
isNaN(false) // Returns false
isNaN(undefined) // Returns true

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

var y = 234;
var z = y;

In the above example, the assign operator knows that the value assigned to y is a
primitive type (number type in this case), so when the second line code executes,
where the value of y is assigned to z, the assign operator takes the value of y (234)
and allocates a new space in the memory and returns the address. Therefore,
variable z is not pointing to the location of variable y, instead, it is pointing to a new
location in the memory.

Page 18 © Copyright by Interviewbit

var y = #8454; // y pointing to address of the value 234

var z = y;

var z = #5411; // z pointing to a completely new address of the value 234

// Changing the value of y
y = 23;
console.log(z); // Returns 234, since z points to a new address in the memory so chang

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

From the above example, we can see that primitive data types when passed to
another variable, are passed by value. Instead of just assigning the same address to
another variable, the value is passed and new space of memory is created.

Assign operator dealing with non-primitive types:

var obj = { name: "Vivek", surname: "Bisht" };
var obj2 = obj;

In the above example, the assign operator directly passes the location of the variable
obj to the variable obj2. In other words, the reference of the variable obj is passed to
the variable obj2.

Page 19 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

From the above example, we can see that while passing non-primitive data types, the
assign operator directly passes the address (reference).

Therefore, non-primitive data types are always passed by reference.

10. What is an Immediately Invoked Function in JavaScript?

An Immediately Invoked Function (known as IIFE and pronounced as IIFY) is a
function that runs as soon as it is defined.

Syntax of IIFE :

(function(){
 // Do something;
})();

To understand IIFE, we need to understand the two sets of parentheses that are
added while creating an IIFE :

The first set of parenthesis:

(function (){
 //Do something;
})

Page 20 © Copyright by Interviewbit

var obj = #8711; // obj pointing to address of { name: "Vivek", surname: "Bisht" }
var obj2 = obj;

var obj2 = #8711; // obj2 pointing to the same address

// changing the value of obj1

obj1.name = "Akki";
console.log(obj2);

// Returns {name:"Akki", surname:"Bisht"} since both the variables are pointing to the

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

While executing javascript code, whenever the compiler sees the word “function”, it
assumes that we are declaring a function in the code. Therefore, if we do not use the
first set of parentheses, the compiler throws an error because it thinks we are
declaring a function, and by the syntax of declaring a function, a function should
always have a name.

To remove this error, we add the first set of parenthesis that tells the compiler that
the function is not a function declaration, instead, it’s a function expression.

The second set of parenthesis:

(function (){
 //Do something;
})();

From the definition of an IIFE, we know that our code should run as soon as it is
defined. A function runs only when it is invoked. If we do not invoke the function, the
function declaration is returned:

(function (){
 // Do something;
})

// Returns the function declaration

Therefore to invoke the function, we use the second set of parenthesis.

11. What do you mean by strict mode in javascript and
characteristics of javascript strict-mode?

Page 21 © Copyright by Interviewbit

function() {
 //Do something;
}
// Compiler gives an error since the syntax of declaring a function is wrong in the cod

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

In ECMAScript 5, a new feature called JavaScript Strict Mode allows you to write a
code or a function in a "strict" operational environment. In most cases, this language
is 'not particularly severe' when it comes to throwing errors. In 'Strict mode,'
however, all forms of errors, including silent errors, will be thrown. As a result,
debugging becomes a lot simpler. Thus programmer's chances of making an error
are lowered.

Characteristics of strict mode in javascript

1. Duplicate arguments are not allowed by developers.
2. In strict mode, you won't be able to use the JavaScript keyword as a parameter

or function name.
3. The 'use strict' keyword is used to define strict mode at the start of the script.

Strict mode is supported by all browsers.
4. Engineers will not be allowed to create global variables in 'Strict Mode.

12. Explain Higher Order Functions in javascript.

Functions that operate on other functions, either by taking them as arguments or
by returning them, are called higher-order functions.

Higher-order functions are a result of functions being first-class citizens in
javascript.

Examples of higher-order functions:

function higherOrder(fn) {
 fn();
}

higherOrder(function() { console.log("Hello world") });

Page 22 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

function higherOrder2() {
 return function() {
 return "Do something";
 }
}
var x = higherOrder2();
x() // Returns "Do something"

13. Explain “this” keyword.

The “this” keyword refers to the object that the function is a property of.

The value of the “this” keyword will always depend on the object that is invoking
the function.\

Confused? Let’s understand the above statements by examples:

function doSomething() {
 console.log(this);
}

doSomething();

What do you think the output of the above code will be?

Note - Observe the line where we are invoking the function.

Check the definition again:

The “this” keyword refers to the object that the function is a property of.

In the above code, the function is a property of which object?

Since the function is invoked in the global context, the function is a property of the
global object.

Therefore, the output of the above code will be the global object. Since we ran the
above code inside the browser, the global object is the window object.

Example 2:

Page 23 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

var obj = {
 name: "vivek",
 getName: function(){
 console.log(this.name);
 }
}

obj.getName();

In the above code, at the time of invocation, the getName function is a property of
the object obj , therefore, this keyword will refer to the object obj, and hence the
output will be “vivek”.

Example 3:

 var obj = {
 name: "vivek",
 getName: function(){
 console.log(this.name);
 }

}

var getName = obj.getName;

var obj2 = {name:"akshay", getName };
obj2.getName();

Can you guess the output here?

The output will be “akshay”.

Although the getName function is declared inside the object obj, at the time of
invocation, getName() is a property of obj2, therefore the “this” keyword will refer to
obj2.

The silly way to understand the “this” keyword is, whenever the function is invoked,
check the object before the dot. The value of this . keyword will always be the object
before the dot.

If there is no object before the dot-like in example1, the value of this keyword will be
the global object.

Page 24 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Example 4:

var obj1 = {
 address : "Mumbai,India",
 getAddress: function(){
 console.log(this.address);
 }
}

var getAddress = obj1.getAddress;
var obj2 = {name:"akshay"};
obj2.getAddress();

Can you guess the output?

The output will be an error.

Although in the code above, this keyword refers to the object obj2, obj2 does not
have the property “address”‘, hence the getAddress function throws an error.

14. What do you mean by Self Invoking Functions?

Without being requested, a self-invoking expression is automatically invoked
(initiated). If a function expression is followed by (), it will execute automatically. A
function declaration cannot be invoked by itself.

Normally, we declare a function and call it, however, anonymous functions may be
used to run a function automatically when it is described and will not be called again.
And there is no name for these kinds of functions.

15. Explain call(), apply() and, bind() methods.

1. call():

It’s a predefined method in javascript.
This method invokes a method (function) by specifying the owner object.
Example 1:

Page 25 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

function sayHello(){
 return "Hello " + this.name;
}

var obj = {name: "Sandy"};

sayHello.call(obj);

// Returns "Hello Sandy"

call() method allows an object to use the method (function) of another object.
Example 2:

var person = {
 age: 23,
 getAge: function(){
 return this.age;
 }
}
var person2 = {age: 54};
person.getAge.call(person2);
// Returns 54

call() accepts arguments:

function saySomething(message){
 return this.name + " is " + message;
}
var person4 = {name: "John"};
saySomething.call(person4, "awesome");
// Returns "John is awesome"

apply()

The apply method is similar to the call() method. The only difference is that,

call() method takes arguments separately whereas, apply() method takes
arguments as an array.

Page 26 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

function saySomething(message){
 return this.name + " is " + message;
}
var person4 = {name: "John"};
saySomething.apply(person4, ["awesome"]);

2. bind():

This method returns a new function, where the value of “this” keyword will be
bound to the owner object, which is provided as a parameter.
Example with arguments:

16. What is the difference between exec () and test () methods in
javascript?

test () and exec () are RegExp expression methods used in javascript.
We'll use exec () to search a string for a specific pattern, and if it finds it, it'll
return the pattern directly; else, it'll return an 'empty' result.
We will use a test () to find a string for a specific pattern. It will return the
Boolean value 'true' on finding the given text otherwise, it will return 'false'.

17. What is currying in JavaScript?

Currying is an advanced technique to transform a function of arguments n, to n
functions of one or fewer arguments.

Page 27 © Copyright by Interviewbit

var bikeDetails = {
 displayDetails: function(registrationNumber,brandName){
 return this.name+ " , "+ "bike details: "+ registrationNumber + " , " + brandName;
 }
}

var person1 = {name: "Vivek"};

var detailsOfPerson1 = bikeDetails.displayDetails.bind(person1, "TS0122", "Bullet");

// Binds the displayDetails function to the person1 object

detailsOfPerson1();
// Returns Vivek, bike details: TS0452, Thunderbird

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Example of a curried function:

function add (a) {
 return function(b){
 return a + b;
 }
}

add(3)(4)

For Example, if we have a function f(a,b), then the function a�er currying, will be
transformed to f(a)(b).

By using the currying technique, we do not change the functionality of a function, we
just change the way it is invoked.

Let’s see currying in action:

function multiply(a,b){
 return a*b;
}

function currying(fn){
 return function(a){
 return function(b){
 return fn(a,b);
 }
 }
}

var curriedMultiply = currying(multiply);

multiply(4, 3); // Returns 12

curriedMultiply(4)(3); // Also returns 12

As one can see in the code above, we have transformed the function multiply(a,b) to
a function curriedMultiply , which takes in one parameter at a time.

18. What are some advantages of using External JavaScript?

Page 28 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

External JavaScript is the JavaScript Code (script) written in a separate file with the
extension.js, and then we link that file inside the <head> or <body> element of the
HTML file where the code is to be placed.

Some advantages of external javascript are

1. It allows web designers and developers to collaborate on HTML and javascript
files.

2. We can reuse the code.
3. Code readability is simple in external javascript.

19. Explain Scope and Scope Chain in javascript.

Scope in JS determines the accessibility of variables and functions at various parts of
one’s code.

In general terms, the scope will let us know at a given part of code, what are variables
and functions we can or cannot access.

There are three types of scopes in JS:

Global Scope
Local or Function Scope
Block Scope

Global Scope: Variables or functions declared in the global namespace have global
scope, which means all the variables and functions having global scope can be
accessed from anywhere inside the code.

Page 29 © Copyright by Interviewbit

var globalVariable = "Hello world";

function sendMessage(){
 return globalVariable; // can access globalVariable since it's written in global spac
}
function sendMessage2(){
 return sendMessage(); // Can access sendMessage function since it's written in global
}
sendMessage2(); // Returns “Hello world”

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Function Scope: Any variables or functions declared inside a function have
local/function scope, which means that all the variables and functions declared
inside a function, can be accessed from within the function and not outside of it.

Block Scope: Block scope is related to the variables declared using let and const.
Variables declared with var do not have block scope. Block scope tells us that any
variable declared inside a block { }, can be accessed only inside that block and cannot
be accessed outside of it.

Scope Chain: JavaScript engine also uses Scope to find variables. Let’s understand
that using an example:

Page 30 © Copyright by Interviewbit

function awesomeFunction(){
 var a = 2;

 var multiplyBy2 = function(){
 console.log(a*2); // Can access variable "a" since a and multiplyBy2 both are writt
 }
}
console.log(a); // Throws reference error since a is written in local scope and cannot

multiplyBy2(); // Throws reference error since multiplyBy2 is written in local scope

{
 let x = 45;
}

console.log(x); // Gives reference error since x cannot be accessed outside of the bloc

for(let i=0; i<2; i++){
 // do something
}

console.log(i); // Gives reference error since i cannot be accessed outside of the for

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

As you can see in the code above, if the javascript engine does not find the
variable in local scope, it tries to check for the variable in the outer scope. If the
variable does not exist in the outer scope, it tries to find the variable in the global
scope.

If the variable is not found in the global space as well, a reference error is thrown.

20. Explain Closures in JavaScript.

Closures are an ability of a function to remember the variables and functions that are
declared in its outer scope.

var Person = function(pName){
 var name = pName;

 this.getName = function(){
 return name;
 }
}

var person = new Person("Neelesh");
console.log(person.getName());

Let’s understand closures by example:

Page 31 © Copyright by Interviewbit

var y = 24;

function favFunction(){
 var x = 667;
 var anotherFavFunction = function(){
 console.log(x); // Does not find x inside anotherFavFunction, so looks for variable
 }

 var yetAnotherFavFunction = function(){
 console.log(y); // Does not find y inside yetAnotherFavFunction, so looks for varia
 }

 anotherFavFunction();
 yetAnotherFavFunction();
}
favFunction();

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Let’s understand the code above,

The function randomFunc() gets executed and returns a function when we assign it
to a variable:

var initialiseClosure = randomFunc();

The returned function is then executed when we invoke initialiseClosure:

initialiseClosure();

The line of code above outputs “Vivian is awesome” and this is possible because of
closure.

console.log(obj1.name + " is "+ "awesome");

When the function randomFunc() runs, it seems that the returning function is using
the variable obj1 inside it:

Page 32 © Copyright by Interviewbit

function randomFunc(){
 var obj1 = {name:"Vivian", age:45};

 return function(){
 console.log(obj1.name + " is "+ "awesome"); // Has access to obj1 even when the ran

 }
}

var initialiseClosure = randomFunc(); // Returns a function

initialiseClosure();

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Therefore randomFunc(), instead of destroying the value of obj1 a�er execution,
saves the value in the memory for further reference. This is the reason why the
returning function is able to use the variable declared in the outer scope even a�er
the function is already executed.

This ability of a function to store a variable for further reference even a�er it is
executed is called Closure.

21. Mention some advantages of javascript.

There are many advantages of javascript. Some of them are

1. Javascript is executed on the client-side as well as server-side also. There are a
variety of Frontend Frameworks that you may study and utilize. However, if you
want to use JavaScript on the backend, you'll need to learn NodeJS. It is
currently the only JavaScript framework that may be used on the backend.

2. Javascript is a simple language to learn.
3. Web pages now have more functionality because of Javascript.
4. To the end-user, Javascript is quite quick.

22. What are object prototypes?

All javascript objects inherit properties from a prototype. For example,

Date objects inherit properties from the Date prototype
Math objects inherit properties from the Math prototype
Array objects inherit properties from the Array prototype.
On top of the chain is Object.prototype. Every prototype inherits properties and
methods from the Object.prototype.
A prototype is a blueprint of an object. The prototype allows us to use
properties and methods on an object even if the properties and methods do not
exist on the current object.

Let’s see prototypes help us use methods and properties:

Page 33 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

var arr = [];
arr.push(2);

console.log(arr); // Outputs [2]

In the code above, as one can see, we have not defined any property or method
called push on the array “arr” but the javascript engine does not throw an error.

The reason is the use of prototypes. As we discussed before, Array objects inherit
properties from the Array prototype.

The javascript engine sees that the method push does not exist on the current array
object and therefore, looks for the method push inside the Array prototype and it
finds the method.

Whenever the property or method is not found on the current object, the javascript
engine will always try to look in its prototype and if it still does not exist, it looks
inside the prototype's prototype and so on.

23. What are callbacks?

Page 34 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

A callback is a function that will be executed a�er another function gets executed. In
javascript, functions are treated as first-class citizens, they can be used as an
argument of another function, can be returned by another function, and can be used
as a property of an object.

Functions that are used as an argument to another function are called callback
functions. Example:

function divideByHalf(sum){
 console.log(Math.floor(sum / 2));
}

function multiplyBy2(sum){
 console.log(sum * 2);
}

function operationOnSum(num1,num2,operation){
 var sum = num1 + num2;
 operation(sum);
}

operationOnSum(3, 3, divideByHalf); // Outputs 3

operationOnSum(5, 5, multiplyBy2); // Outputs 20

In the code above, we are performing mathematical operations on the sum of
two numbers. The operationOnSum function takes 3 arguments, the first
number, the second number, and the operation that is to be performed on their
sum (callback).
Both divideByHalf and multiplyBy2 functions are used as callback functions in
the code above.
These callback functions will be executed only a�er the function
operationOnSum is executed.
Therefore, a callback is a function that will be executed a�er another function
gets executed.

24. What are the types of errors in javascript?

There are two types of errors in javascript.

Page 35 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

1. Syntax error: Syntax errors are mistakes or spelling problems in the code that
cause the program to not execute at all or to stop running halfway through.
Error messages are usually supplied as well.

2. Logical error: Reasoning mistakes occur when the syntax is proper but the logic
or program is incorrect. The application executes without problems in this case.
However, the output findings are inaccurate. These are sometimes more difficult
to correct than syntax issues since these applications do not display error signals
for logic faults.

25. What is memoization?

Memoization is a form of caching where the return value of a function is cached
based on its parameters. If the parameter of that function is not changed, the cached
version of the function is returned.
Let’s understand memoization, by converting a simple function to a memoized
function:

Note- Memoization is used for expensive function calls but in the following
example, we are considering a simple function for understanding the concept of
memoization better.

Consider the following function:

function addTo256(num){
 return num + 256;
}
addTo256(20); // Returns 276
addTo256(40); // Returns 296
addTo256(20); // Returns 276

Page 36 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

In the code above, we have written a function that adds the parameter to 256 and
returns it.

When we are calling the function addTo256 again with the same parameter (“20” in
the case above), we are computing the result again for the same parameter.

Computing the result with the same parameter, again and again, is not a big deal in
the above case, but imagine if the function does some heavy-duty work, then,
computing the result again and again with the same parameter will lead to wastage
of time.

This is where memoization comes in, by using memoization we can store(cache) the
computed results based on the parameters. If the same parameter is used again
while invoking the function, instead of computing the result, we directly return the
stored (cached) value.

Let’s convert the above function addTo256, to a memoized function:

function memoizedAddTo256(){
 var cache = {};

 return function(num){
 if(num in cache){
 console.log("cached value");
 return cache[num]
 }
 else{
 cache[num] = num + 256;
 return cache[num];
 }
 }
}
var memoizedFunc = memoizedAddTo256();

memoizedFunc(20); // Normal return
memoizedFunc(20); // Cached return

In the code above, if we run the memoizedFunc function with the same parameter,
instead of computing the result again, it returns the cached result.

Page 37 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Note- Although using memoization saves time, it results in larger consumption
of memory since we are storing all the computed results.

26. What is recursion in a programming language?

Recursion is a technique to iterate over an operation by having a function call itself
repeatedly until it arrives at a result.

function add(number) {
 if (number <= 0) {
 return 0;
 } else {
 return number + add(number - 1);
 }
}
add(3) => 3 + add(2)
 3 + 2 + add(1)
 3 + 2 + 1 + add(0)
 3 + 2 + 1 + 0 = 6

Example of a recursive function:

The following function calculates the sum of all the elements in an array by using
recursion:

function computeSum(arr){
 if(arr.length === 1){
 return arr[0];
 }
 else{
 return arr.pop() + computeSum(arr);
 }
}
computeSum([7, 8, 9, 99]); // Returns 123

27. What is the use of a constructor function in javascript?

Constructor functions are used to create objects in javascript.

When do we use constructor functions?

Page 38 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

If we want to create multiple objects having similar properties and methods,
constructor functions are used.

Note- The name of a constructor function should always be written in Pascal
Notation: every word should start with a capital letter.

Example:

function Person(name,age,gender){
 this.name = name;
 this.age = age;
 this.gender = gender;
}

var person1 = new Person("Vivek", 76, "male");
console.log(person1);

var person2 = new Person("Courtney", 34, "female");
console.log(person2);

In the code above, we have created a constructor function named Person. Whenever
we want to create a new object of the type Person, We need to create it using the new
keyword:

var person3 = new Person("Lilly", 17, "female");

The above line of code will create a new object of the type Person. Constructor
functions allow us to group similar objects.

28. What is DOM?

Page 39 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

DOM stands for Document Object Model. DOM is a programming interface for
HTML and XML documents.
When the browser tries to render an HTML document, it creates an object based
on the HTML document called DOM. Using this DOM, we can manipulate or
change various elements inside the HTML document.
Example of how HTML code gets converted to DOM:

29. Which method is used to retrieve a character from a certain
index?

The charAt() function of the JavaScript string finds a char element at the supplied
index. The index number begins at 0 and continues up to n-1, Here n is the string
length. The index value must be positive, higher than, or the same as the string
length.

30. What do you mean by BOM?

Browser Object Model is known as BOM. It allows users to interact with the browser. A
browser's initial object is a window. As a result, you may call all of the window's
functions directly or by referencing the window. The document, history, screen,
navigator, location, and other attributes are available in the window object.

Page 40 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

31. What is the distinction between client-side and server-side
JavaScript?

Client-side JavaScript is made up of two parts, a fundamental language and
predefined objects for performing JavaScript in a browser. JavaScript for the client is
automatically included in the HTML pages. At runtime, the browser understands this
script.

Client-side JavaScript is similar to server-side JavaScript. It includes JavaScript that
will execute on a server. Only a�er processing is the server-side JavaScript deployed.

JavaScript Interview Questions for Experienced
32. What are arrow functions?

Arrow functions were introduced in the ES6 version of javascript. They provide us
with a new and shorter syntax for declaring functions. Arrow functions can only be
used as a function expression.

Let’s compare the normal function declaration and the arrow function declaration in
detail:

Page 41 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

// Traditional Function Expression
var add = function(a,b){
 return a + b;
}

// Arrow Function Expression
var arrowAdd = (a,b) => a + b;

Arrow functions are declared without the function keyword. If there is only one
returning expression then we don’t need to use the return keyword as well in an
arrow function as shown in the example above. Also, for functions having just one
line of code, curly braces { } can be omitted.

// Traditional function expression
var multiplyBy2 = function(num){
 return num * 2;
}
// Arrow function expression
var arrowMultiplyBy2 = num => num * 2;

If the function takes in only one argument, then the parenthesis () around the
parameter can be omitted as shown in the code above.

var obj1 = {
 valueOfThis: function(){
 return this;
 }
}
var obj2 = {
 valueOfThis: ()=>{
 return this;
 }
}

obj1.valueOfThis(); // Will return the object obj1
obj2.valueOfThis(); // Will return window/global object

Page 42 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

The biggest difference between the traditional function expression and the arrow
function is the handling of this keyword. By general definition, this keyword always
refers to the object that is calling the function. As you can see in the code above,
obj1.valueOfThis() returns obj1 since this keyword refers to the object calling the
function.

In the arrow functions, there is no binding of this keyword. This keyword inside an
arrow function does not refer to the object calling it. It rather inherits its value from
the parent scope which is the window object in this case. Therefore, in the code
above, obj2.valueOfThis() returns the window object.

33. What do mean by prototype design pattern?

The Prototype Pattern produces different objects, but instead of returning
uninitialized objects, it produces objects that have values replicated from a template
– or sample – object. Also known as the Properties pattern, the Prototype pattern is
used to create prototypes.

The introduction of business objects with parameters that match the database's
default settings is a good example of where the Prototype pattern comes in handy.
The default settings for a newly generated business object are stored in the
prototype object.

The Prototype pattern is hardly used in traditional languages, however, it is used in
the development of new objects and templates in JavaScript, which is a prototypal
language.

34. Differences between declaring variables using var, let and
const.

Before the ES6 version of javascript, only the keyword var was used to declare
variables. With the ES6 Version, keywords let and const were introduced to declare
variables.

Page 43 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

keyword const let var

global scope no no yes

function scope yes yes yes

block scope yes yes no

can be reassigned no yes yes

Let’s understand the differences with examples:

Page 44 © Copyright by Interviewbit

var variable1 = 23;

let variable2 = 89;

function catchValues(){
 console.log(variable1);
 console.log(variable2);

// Both the variables can be accessed anywhere since they are declared in the global sc
}

window.variable1; // Returns the value 23

window.variable2; // Returns undefined

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

The variables declared with the let keyword in the global scope behave just like
the variable declared with the var keyword in the global scope.
Variables declared in the global scope with var and let keywords can be accessed
from anywhere in the code.
But, there is one difference! Variables that are declared with the var keyword in
the global scope are added to the window/global object. Therefore, they can be
accessed using window.variableName.
Whereas, the variables declared with the let keyword are not added to the global
object, therefore, trying to access such variables using window.variableName
results in an error.

var vs let in functional scope

function varVsLetFunction(){
 let awesomeCar1 = "Audi";
 var awesomeCar2 = "Mercedes";
}

console.log(awesomeCar1); // Throws an error
console.log(awesomeCar2); // Throws an error

Variables are declared in a functional/local scope using var and let keywords behave
exactly the same, meaning, they cannot be accessed from outside of the scope.

Page 45 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

{
 var variable3 = [1, 2, 3, 4];
}

console.log(variable3); // Outputs [1,2,3,4]

{
 let variable4 = [6, 55, -1, 2];
}

console.log(variable4); // Throws error

for(let i = 0; i < 2; i++){
 //Do something
}

console.log(i); // Throws error

for(var j = 0; j < 2; i++){
 // Do something
}

console.log(j) // Outputs 2

In javascript, a block means the code written inside the curly braces {}.
Variables declared with var keyword do not have block scope. It means a
variable declared in block scope {} with the var keyword is the same as declaring
the variable in the global scope.
Variables declared with let keyword inside the block scope cannot be accessed
from outside of the block.

Const keyword

Variables with the const keyword behave exactly like a variable declared with
the let keyword with only one difference, any variable declared with the const
keyword cannot be reassigned.
Example:

Page 46 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

const x = {name:"Vivek"};

x = {address: "India"}; // Throws an error

x.name = "Nikhil"; // No error is thrown

const y = 23;

y = 44; // Throws an error

In the code above, although we can change the value of a property inside the variable
declared with const keyword, we cannot completely reassign the variable itself.

35. What is the rest parameter and spread operator?

Both rest parameter and spread operator were introduced in the ES6 version of
javascript.

Rest parameter (…):

It provides an improved way of handling the parameters of a function.
Using the rest parameter syntax, we can create functions that can take a variable
number of arguments.
Any number of arguments will be converted into an array using the rest
parameter.
It also helps in extracting all or some parts of the arguments.
Rest parameters can be used by applying three dots (...) before the parameters.

Page 47 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

function extractingArgs(...args){
 return args[1];
}

// extractingArgs(8,9,1); // Returns 9

function addAllArgs(...args){
 let sumOfArgs = 0;
 let i = 0;
 while(i < args.length){
 sumOfArgs += args[i];
 i++;
 }
 return sumOfArgs;
}

addAllArgs(6, 5, 7, 99); // Returns 117
addAllArgs(1, 3, 4); // Returns 8

**Note- Rest parameter should always be used at the last parameter of a
function:

// Incorrect way to use rest parameter
function randomFunc(a,...args,c){
//Do something
}

// Correct way to use rest parameter
function randomFunc2(a,b,...args){
//Do something
}

Spread operator (…): Although the syntax of the spread operator is exactly the
same as the rest parameter, the spread operator is used to spreading an array,
and object literals. We also use spread operators where one or more arguments
are expected in a function call.

Page 48 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

function addFourNumbers(num1,num2,num3,num4){
 return num1 + num2 + num3 + num4;
}

let fourNumbers = [5, 6, 7, 8];

addFourNumbers(...fourNumbers);
// Spreads [5,6,7,8] as 5,6,7,8

let array1 = [3, 4, 5, 6];
let clonedArray1 = [...array1];
// Spreads the array into 3,4,5,6
console.log(clonedArray1); // Outputs [3,4,5,6]

let obj1 = {x:'Hello', y:'Bye'};
let clonedObj1 = {...obj1}; // Spreads and clones obj1
console.log(obj1);

let obj2 = {z:'Yes', a:'No'};
let mergedObj = {...obj1, ...obj2}; // Spreads both the objects and merges it
console.log(mergedObj);
// Outputs {x:'Hello', y:'Bye',z:'Yes',a:'No'};

***Note- Key differences between rest parameter and spread operator:

Rest parameter is used to take a variable number of arguments and turns
them into an array while the spread operator takes an array or an object
and spreads it
Rest parameter is used in function declaration whereas the spread operator
is used in function calls.

36. In JavaScript, how many different methods can you make an
object?

In JavaScript, there are several ways to declare or construct an object.

Page 49 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

1. Object.
2. using Class.
3. create Method.
4. Object Literals.
5. using Function.
6. Object Constructor.

37. What is the use of promises in javascript?

Promises are used to handle asynchronous operations in javascript.

Before promises, callbacks were used to handle asynchronous operations. But due to
the limited functionality of callbacks, using multiple callbacks to handle
asynchronous code can lead to unmanageable code.

Promise object has four states -

Pending - Initial state of promise. This state represents that the promise has
neither been fulfilled nor been rejected, it is in the pending state.
Fulfilled - This state represents that the promise has been fulfilled, meaning the
async operation is completed.
Rejected - This state represents that the promise has been rejected for some
reason, meaning the async operation has failed.
Settled - This state represents that the promise has been either rejected or
fulfilled.

A promise is created using the Promise constructor which takes in a callback
function with two parameters, resolve and reject respectively.

Page 50 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

resolve is a function that will be called when the async operation has been
successfully completed.

reject is a function that will be called, when the async operation fails or if some error
occurs.

Example of a promise:

Promises are used to handle asynchronous operations like server requests, for
ease of understanding, we are using an operation to calculate the sum of three
elements.

In the function below, we are returning a promise inside a function:

Page 51 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

function sumOfThreeElements(...elements){
 return new Promise((resolve,reject)=>{
 if(elements.length > 3){
 reject("Only three elements or less are allowed");
 }
 else{
 let sum = 0;
 let i = 0;
 while(i < elements.length){
 sum += elements[i];
 i++;
 }
 resolve("Sum has been calculated: "+sum);
 }
 })
}

In the code above, we are calculating the sum of three elements, if the length of the
elements array is more than 3, a promise is rejected, or else the promise is resolved
and the sum is returned.

We can consume any promise by attaching then() and catch() methods to the
consumer.

then() method is used to access the result when the promise is fulfilled.

Page 52 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

catch() method is used to access the result/error when the promise is rejected. In the
code below, we are consuming the promise:

sumOfThreeElements(4, 5, 6)
.then(result=> console.log(result))
.catch(error=> console.log(error));
// In the code above, the promise is fulfilled so the then() method gets executed

sumOfThreeElements(7, 0, 33, 41)
.then(result => console.log(result))
.catch(error=> console.log(error));
// In the code above, the promise is rejected hence the catch() method gets executed

38. What are classes in javascript?

Introduced in the ES6 version, classes are nothing but syntactic sugars for
constructor functions. They provide a new way of declaring constructor functions in
javascript. Below are the examples of how classes are declared and used:

Page 53 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Key points to remember about classes:

Unlike functions, classes are not hoisted. A class cannot be used before it is
declared.
A class can inherit properties and methods from other classes by using the
extend keyword.
All the syntaxes inside the class must follow the strict mode(‘use strict’) of
javascript. An error will be thrown if the strict mode rules are not followed.

Page 54 © Copyright by Interviewbit

// Before ES6 version, using constructor functions
function Student(name,rollNumber,grade,section){
 this.name = name;
 this.rollNumber = rollNumber;
 this.grade = grade;
 this.section = section;
}

// Way to add methods to a constructor function
Student.prototype.getDetails = function(){
 return 'Name: ${this.name}, Roll no: ${this.rollNumber}, Grade: ${this.grade}, Sectio
}

let student1 = new Student("Vivek", 354, "6th", "A");
student1.getDetails();
// Returns Name: Vivek, Roll no:354, Grade: 6th, Section:A

// ES6 version classes
class Student{
 constructor(name,rollNumber,grade,section){
 this.name = name;
 this.rollNumber = rollNumber;
 this.grade = grade;
 this.section = section;
 }

 // Methods can be directly added inside the class
 getDetails(){
 return 'Name: ${this.name}, Roll no: ${this.rollNumber}, Grade:${this.grade}, Secti
 }
}

let student2 = new Student("Garry", 673, "7th", "C");
student2.getDetails();
// Returns Name: Garry, Roll no:673, Grade: 7th, Section:C

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

39. What are generator functions?

Introduced in the ES6 version, generator functions are a special class of functions.

They can be stopped midway and then continue from where they had stopped.

Generator functions are declared with the function* keyword instead of the normal
function keyword:

function* genFunc(){
 // Perform operation
}

In normal functions, we use the return keyword to return a value and as soon as the
return statement gets executed, the function execution stops:

function normalFunc(){
 return 22;
 console.log(2); // This line of code does not get executed
}

In the case of generator functions, when called, they do not execute the code,
instead, they return a generator object. This generator object handles the execution.

function* genFunc(){
 yield 3;
 yield 4;
}
genFunc(); // Returns Object [Generator] {}

The generator object consists of a method called next(), this method when called,
executes the code until the nearest yield statement, and returns the yield value.

For example, if we run the next() method on the above code:

genFunc().next(); // Returns {value: 3, done:false}

Page 55 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

As one can see the next method returns an object consisting of a value and done
properties. Value property represents the yielded value. Done property tells us
whether the function code is finished or not. (Returns true if finished).

Generator functions are used to return iterators. Let’s see an example where an
iterator is returned:

function* iteratorFunc() {
 let count = 0;
 for (let i = 0; i < 2; i++) {
 count++;
 yield i;
 }
 return count;
}

let iterator = iteratorFunc();
console.log(iterator.next()); // {value:0,done:false}
console.log(iterator.next()); // {value:1,done:false}
console.log(iterator.next()); // {value:2,done:true}

As you can see in the code above, the last line returns done:true, since the code
reaches the return statement.

40. Explain WeakSet in javascript.

In javascript, a Set is a collection of unique and ordered elements. Just like Set,
WeakSet is also a collection of unique and ordered elements with some key
differences:

Weakset contains only objects and no other type.
An object inside the weakset is referenced weakly. This means, that if the object
inside the weakset does not have a reference, it will be garbage collected.
Unlike Set, WeakSet only has three methods, add() , delete() and has() .

Page 56 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

const newSet = new Set([4, 5, 6, 7]);
console.log(newSet);// Outputs Set {4,5,6,7}

const newSet2 = new WeakSet([3, 4, 5]); //Throws an error

let obj1 = {message:"Hello world"};
const newSet3 = new WeakSet([obj1]);
console.log(newSet3.has(obj1)); // true

41. Why do we use callbacks?

A callback function is a method that is sent as an input to another function (now let
us name this other function "thisFunction"), and it is performed inside the
thisFunction a�er the function has completed execution.

JavaScript is a scripting language that is based on events. Instead of waiting for a
reply before continuing, JavaScript will continue to run while monitoring for
additional events. Callbacks are a technique of ensuring that a particular code does
not run until another code has completed its execution.

42. Explain WeakMap in javascript.

In javascript, Map is used to store key-value pairs. The key-value pairs can be of both
primitive and non-primitive types. WeakMap is similar to Map with key differences:

The keys and values in weakmap should always be an object.
If there are no references to the object, the object will be garbage collected.

const map1 = new Map();
map1.set('Value', 1);

const map2 = new WeakMap();
map2.set('Value', 2.3); // Throws an error

let obj = {name:"Vivek"};
const map3 = new WeakMap();
map3.set(obj, {age:23});

43. What is Object Destructuring?

Object destructuring is a new way to extract elements from an object or an array.

Page 57 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Object destructuring: Before ES6 version:

const classDetails = {
 strength: 78,
 benches: 39,
 blackBoard:1
}

const classStrength = classDetails.strength;
const classBenches = classDetails.benches;
const classBlackBoard = classDetails.blackBoard;

The same example using object destructuring:

As one can see, using object destructuring we have extracted all the elements inside
an object in one line of code. If we want our new variable to have the same name as
the property of an object we can remove the colon:

const {strength:strength} = classDetails;
// The above line of code can be written as:
const {strength} = classDetails;

Array destructuring: Before ES6 version:

const arr = [1, 2, 3, 4];
const first = arr[0];
const second = arr[1];
const third = arr[2];
const fourth = arr[3];

Page 58 © Copyright by Interviewbit

const classDetails = {
 strength: 78,
 benches: 39,
 blackBoard:1
}

const {strength:classStrength, benches:classBenches,blackBoard:classBlackBoard} = class

console.log(classStrength); // Outputs 78
console.log(classBenches); // Outputs 39
console.log(classBlackBoard); // Outputs 1

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

The same example using object destructuring:

const arr = [1, 2, 3, 4];
const [first,second,third,fourth] = arr;
console.log(first); // Outputs 1
console.log(second); // Outputs 2
console.log(third); // Outputs 3
console.log(fourth); // Outputs 4

44. Difference between prototypal and classical inheritance

Programers build objects, which are representations of real-time entities, in
traditional OO programming. Classes and objects are the two sorts of abstractions. A
class is a generalization of an object, whereas an object is an abstraction of an actual
thing. A Vehicle, for example, is a specialization of a Car. As a result, automobiles
(class) are descended from vehicles (object).

Classical inheritance differs from prototypal inheritance in that classical inheritance
is confined to classes that inherit from those remaining classes, but prototypal
inheritance allows any object to be cloned via an object linking method. Despite
going into too many specifics, a prototype essentially serves as a template for those
other objects, whether they extend the parent object or not.

45. What is a Temporal Dead Zone?

Temporal Dead Zone is a behaviour that occurs with variables declared using let and
const keywords. It is a behaviour where we try to access a variable before it is
initialized. Examples of temporal dead zone:

x = 23; // Gives reference error

let x;

function anotherRandomFunc(){
 message = "Hello"; // Throws a reference error

 let message;
}
anotherRandomFunc();

Page 59 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

In the code above, both in the global scope and functional scope, we are trying to
access variables that have not been declared yet. This is called the Temporal Dead
Zone.

46. What do you mean by JavaScript Design Patterns?

JavaScript design patterns are repeatable approaches for errors that arise
sometimes when building JavaScript browser applications. They truly assist us in
making our code more stable.

They are divided mainly into 3 categories

1. Creational Design Pattern
2. Structural Design Pattern
3. Behavioral Design Pattern.

Creational Design Pattern: The object generation mechanism is addressed by
the JavaScript Creational Design Pattern. They aim to make items that are
appropriate for a certain scenario.
Structural Design Pattern: The JavaScript Structural Design Pattern explains
how the classes and objects we've generated so far can be combined to
construct bigger frameworks. This pattern makes it easier to create
relationships between items by defining a straightforward way to do so.
Behavioral Design Pattern: This design pattern highlights typical patterns of
communication between objects in JavaScript. As a result, the communication
may be carried out with greater freedom.

47. Is JavaScript a pass-by-reference or pass-by-value
language?

The variable's data is always a reference for objects, hence it's always pass by value.
As a result, if you supply an object and alter its members inside the method, the
changes continue outside of it. It appears to be pass by reference in this case.
However, if you modify the values of the object variable, the change will not last,
demonstrating that it is indeed passed by value.

Page 60 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

48. Difference between Async/Await and Generators usage to
achieve the same functionality.

Generator functions are run by their generator yield by yield which means one
output at a time, whereas Async-await functions are executed sequentially one
a�er another.
Async/await provides a certain use case for Generators easier to execute.
The output result of the Generator function is always value: X, done: Boolean,
but the return value of the Async function is always an assurance or throws an
error.

49. What are the primitive data types in JavaScript?

A primitive is a data type that isn't composed of other data types. It's only capable of
displaying one value at a time. By definition, every primitive is a built-in data type
(the compiler must be knowledgeable of them) nevertheless, not all built-in datasets
are primitives. In JavaScript, there are 5 different forms of basic data. The following
values are available:

1. Boolean
2. Undefined
3. Null
4. Number
5. String

50. What is the role of deferred scripts in JavaScript?

The processing of HTML code while the page loads are disabled by nature till the
script hasn't halted. Your page will be affected if your network is a bit slow, or if the
script is very he�y. When you use Deferred, the script waits for the HTML parser to
finish before executing it. This reduces the time it takes for web pages to load,
allowing them to appear more quickly.

51. What has to be done in order to put Lexical Scoping into
practice?

Page 61 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

To support lexical scoping, a JavaScript function object's internal state must include
not just the function's code but also a reference to the current scope chain.

52. What is the purpose of the following JavaScript code?

var scope = "global scope";
function check()
{
 var scope = "local scope";
 function f()
 {
 return scope;
 }
 return f;
}

Every executing function, code block, and script as a whole in JavaScript has a
related object known as the Lexical Environment. The preceding code line returns
the value in scope.

JavaScript Coding Interview Questions
53. Guess the outputs of the following codes:

Page 62 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

// Code 1:

function func1(){
 setTimeout(()=>{
 console.log(x);
 console.log(y);
 },3000);

 var x = 2;
 let y = 12;
}
func1();

// Code 2:

function func2(){
 for(var i = 0; i < 3; i++){
 setTimeout(()=> console.log(i),2000);
}
}
func2();

// Code 3:

(function(){
 setTimeout(()=> console.log(1),2000);
 console.log(2);
 setTimeout(()=> console.log(3),0);
 console.log(4);
})();

Answers:

Code 1 - Outputs 2 and 12. Since, even though let variables are not hoisted, due
to the async nature of javascript, the complete function code runs before the
setTimeout function. Therefore, it has access to both x and y.
Code 2 - Outputs 3, three times since variable declared with var keyword does
not have block scope. Also, inside the for loop, the variable i is incremented first
and then checked.
Code 3 - Output in the following order:

Page 63 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

2
4
3
1 // After two seconds

Even though the second timeout function has a waiting time of zero seconds, the
javascript engine always evaluates the setTimeout function using the Web API, and
therefore, the complete function executes before the setTimeout function can
execute.

54. Guess the outputs of the following code:

// Code 1:

let x= {}, y = {name:"Ronny"},z = {name:"John"};
x[y] = {name:"Vivek"};
x[z] = {name:"Akki"};
console.log(x[y]);

// Code 2:

function runFunc(){
 console.log("1" + 1);
 console.log("A" - 1);
 console.log(2 + "-2" + "2");
 console.log("Hello" - "World" + 78);
 console.log("Hello"+ "78");
}
runFunc();

// Code 3:

let a = 0;
let b = false;
console.log((a == b));
console.log((a === b));

Page 64 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Answers:

Code 1 - Output will be {name: “Akki”}.

Adding objects as properties of another object should be done carefully.

Writing x[y] = {name:”Vivek”} , is same as writing x[‘object Object’] =
{name:”Vivek”} ,

While setting a property of an object, javascript coerces the parameter into a
string.

Therefore, since y is an object, it will be converted to ‘object Object’.

Both x[y] and x[z] are referencing the same property.

Code 2 - Outputs in the following order:

11
Nan
2-22
NaN
Hello78

Code 3 - Output in the following order due to equality coercion:

true
false

55. Guess the output of the following code:

Page 65 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

var x = 23;

(function(){
 var x = 43;
 (function random(){
 x++;
 console.log(x);
 var x = 21;
 })();
})();

Answer:

Output is NaN.

random() function has functional scope since x is declared and hoisted in the
functional scope.

Rewriting the random function will give a better idea about the output:

function random(){
 var x; // x is hoisted
 x++; // x is not a number since it is not initialized yet
 console.log(x); // Outputs NaN
 x = 21; // Initialization of x
}

56. Guess the outputs of the following code:

Page 66 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

// Code 1

 let hero = {
 powerLevel: 99,
 getPower(){
 return this.powerLevel;
 }
 }

 let getPower = hero.getPower;

 let hero2 = {powerLevel:42};
 console.log(getPower());
 console.log(getPower.apply(hero2));

 // Code 2

 const a = function(){
 console.log(this);

 const b = {
 func1: function(){
 console.log(this);
 }
 }

 const c = {
 func2: ()=>{
 console.log(this);
 }
 }

 b.func1();
 c.func2();
 }

 a();

 // Code 3

 const b = {
 name:"Vivek",
 f: function(){
 var self = this;
 console.log(this.name);
 (function(){
 console.log(this.name);
 console.log(self.name);
 })();
 }
 }
 b.f();

Page 67 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Answers:

Code 1 - Output in the following order:

undefined
42

Reason - The first output is undefined since when the function is invoked, it is
invoked referencing the global object:

window.getPower() = getPower();

Code 2 - Outputs in the following order:

global/window object
object "b"
global/window object

Since we are using the arrow function inside func2, this keyword refers to the global
object.

Code 3 - Outputs in the following order:

"Vivek"
undefined
"Vivek"

Only in the IIFE inside the function f, this keyword refers to the global/window
object.

57. Guess the outputs of the following code:

Page 68 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

**Note - Code 2 and Code 3 require you to modify the code, instead of guessing
the output.

// Code 1

(function(a){
 return (function(){
 console.log(a);
 a = 23;
 })()
})(45);

// Code 2

// Each time bigFunc is called, an array of size 700 is being created,
// Modify the code so that we don't create the same array again and again

function bigFunc(element){
 let newArray = new Array(700).fill('♥');
 return newArray[element];
}

console.log(bigFunc(599)); // Array is created
console.log(bigFunc(670)); // Array is created again

// Code 3

// The following code outputs 2 and 2 after waiting for one second
// Modify the code to output 0 and 1 after one second.

function randomFunc(){
 for(var i = 0; i < 2; i++){
 setTimeout(()=> console.log(i),1000);
 }
}
randomFunc();

Page 69 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Answers -

Code 1 - Outputs 45.

Even though a is defined in the outer function, due to closure the inner functions
have access to it.

Code 2 - This code can be modified by using closures,

function bigFunc(){
 let newArray = new Array(700).fill('♥');
 return (element) => newArray[element];
}

let getElement = bigFunc(); // Array is created only once
getElement(599);
getElement(670);

Code 3 - Can be modified in two ways:

Using let keyword:

function randomFunc(){
 for(let i = 0; i < 2; i++){
 setTimeout(()=> console.log(i),1000);
 }
}
randomFunc();

Using closure:

function randomFunc(){
 for(var i = 0; i < 2; i++){
 (function(i){
 setTimeout(()=>console.log(i),1000);
 })(i);
 }
}
randomFunc();

Page 70 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

58. Write a function that performs binary search on a sorted
array.

function binarySearch(arr,value,startPos,endPos){
 if(startPos > endPos) return -1;

 let middleIndex = Math.floor(startPos+endPos)/2;

 if(arr[middleIndex] === value) return middleIndex;

 elsif(arr[middleIndex > value]){
 return binarySearch(arr,value,startPos,middleIndex-1);
 }
 else{
 return binarySearch(arr,value,middleIndex+1,endPos);
 }
}

59. Implement a function that returns an updated array with r
right rotations on an array of integers a .

Example:

Given the following array: [2,3,4,5,7]
Perform 3 right rotations:
First rotation : [7,2,3,4,5] , Second rotation : [5,7,2,3,4] and, Third rotation: [4,5,7,2,3]

return [4,5,7,2,3]

Answer:

function rotateRight(arr,rotations){
 if(rotations == 0) return arr;
 for(let i = 0; i < rotations;i++){
 let element = arr.pop();
 arr.unshift(element);
 }
 return arr;
}
rotateRight([2, 3, 4, 5, 7], 3); // Return [4,5,7,2,3]
rotateRight([44, 1, 22, 111], 5); // Returns [111,44,1,22]

60. Write the code for dynamically inserting new components.

Page 71 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

61. Write the code given If two strings are anagrams of one
another, then return true.

var firstWord = "Deepak";
var secondWord = "Aman";

isAnagram(wordOne, wordTwo); // true

function isAnagram(one, two) {
 //Change both words to lowercase for case insensitivity..
 var a = one.toLowerCase();
 var b = two.toLowerCase();

 // Sort the strings, then combine the array to a string. Examine the outcomes.
 a = a.split("").sort().join("");
 b = b.split("").sort().join("");

 return a === b;
}

62. Write the code to find the vowels

Page 72 © Copyright by Interviewbit

<html>
<head>
<title>inserting new components dynamically</title>
<script type="text/javascript">
 function addNode () { var newP = document. createElement("p");
 var textNode = document.createTextNode(" This is other node");
 newP.appendChild(textNode); document.getElementById("parent1").appendChild(newP); }
</script>
</head>
<body> <p id="parent1">firstP<p> </body>
</html>

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

const findVowels = str => {
 let count = 0
 const vowels = ['a', 'e', 'i', 'o', 'u']
 for(let char of str.toLowerCase()) {
 if(vowels.includes(char)) {
 count++
 }
 }
 return count
}

63. In JavaScript, how do you turn an Object into an Array []?

let obj = { id: "1", name: "user22", age: "26", work: "programmer" };

//Method 1: Convert the keys to Array using - Object.keys()
console.log(Object.keys(obj));
// ["id", "name", "age", "work"]

// Method 2 Converts the Values to Array using - Object.values()
console.log(Object.values(obj));
// ["1", "user22r", "26", "programmer"]

// Method 3 Converts both keys and values using - Object.entries()
console.log(Object.entries(obj));
//[["id", "1"],["name", "user22"],["age", "26"],["work", “programmer"]]

64. What is the output of the following code?

const b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

for (let i = 0; i < 10; i++) {
 setTimeout(() => console.log(b[i]), 1000);
}

for (var i = 0; i < 10; i++) {
 setTimeout(() => console.log(b[i]), 1000);
}

Ans.

Page 73 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

1
2
3
4
5
6
7
8
9
10
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined

Conclusion

It is preferable to keep the JavaScript, CSS, and HTML in distinct Separate 'javascript'
files. Dividing the code and HTML sections will make them easier to understand and
deal with. This strategy is also simpler for several programmers to use at the same
time. JavaScript code is simple to update. Numerous pages can utilize the same
group of JavaScript Codes. If we utilize External JavaScript scripts and need to alter
the code, we must do it just once. So that we may utilize a number and maintain it
much more easily. Remember that professional experience and expertise are only
one aspect of recruitment. Previous experience and personal skills are both vital in
landing (or finding the ideal applicant for the job.

Remember that many JavaScript structured interviews are free and have no one
proper answer. Interviewers would like to know why you answered the way you did,
not if you remembered the answer. Explain your answer process and be prepared to
address it.

Page 74 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/

JavaScript Interview Questions

Recommended Resources

https://www.interviewbit.com/javascript-cheat-sheet/
https://www.interviewbit.com/online-javascript-compiler/
https://www.interviewbit.com/blog/javascript-features/
https://www.interviewbit.com/javascript-mcq/
https://www.interviewbit.com/blog/javascript-projects/
https://www.interviewbit.com/blog/javascript-ide/
https://www.interviewbit.com/es6-interview-questions/
https://www.interviewbit.com/blog/best-javascript-books/
https://www.interviewbit.com/node-js-interview-questions/

Interview Guides

https://www.interviewbit.com/technical-interview-questions/
https://www.interviewbit.com/coding-interview-questions/
https://www.interviewbit.com/mock-interview/
https://www.interviewbit.com/blog/

Page 75 © Copyright by Interviewbit

https://www.interviewbit.com/javascript-interview-questions/
https://www.interviewbit.com/javascript-cheat-sheet/
https://www.interviewbit.com/online-javascript-compiler/
https://www.interviewbit.com/blog/javascript-features/
https://www.interviewbit.com/javascript-mcq/
https://www.interviewbit.com/blog/javascript-projects/
https://www.interviewbit.com/blog/javascript-ide/
https://www.interviewbit.com/es6-interview-questions/
https://www.interviewbit.com/blog/best-javascript-books/
https://www.interviewbit.com/node-js-interview-questions/
https://www.interviewbit.com/node-js-interview-questions/
https://www.interviewbit.com/technical-interview-questions/
https://www.interviewbit.com/coding-interview-questions/
https://www.interviewbit.com/mock-interview/
https://www.interviewbit.com/blog/

C Interview Questions Php Interview Questions C Sharp Interview Questions

Web Api Interview
Questions

Hibernate Interview
Questions

Node Js Interview Questions

Cpp Interview Questions Oops Interview Questions Devops Interview Questions

Machine Learning Interview
Questions

Docker Interview Questions Mysql Interview Questions

Css Interview Questions Laravel Interview Questions Asp Net Interview Questions

Django Interview Questions Dot Net Interview Questions Kubernetes Interview
Questions

Operating System Interview
Questions

React Native Interview
Questions

Aws Interview Questions

Git Interview Questions Java 8 Interview Questions Mongodb Interview
Questions

Dbms Interview Questions Spring Boot Interview
Questions

Power Bi Interview Questions

Pl Sql Interview Questions Tableau Interview
Questions

Linux Interview Questions

Ansible Interview Questions Java Interview Questions Jenkins Interview Questions

Page 76 © Copyright by Interviewbit

Links to More Interview
Questions

https://www.interviewbit.com/c-interview-questions
https://www.interviewbit.com/php-interview-questions
https://www.interviewbit.com/c-sharp-interview-questions
https://www.interviewbit.com/web-api-interview-questions
https://www.interviewbit.com/hibernate-interview-questions
https://www.interviewbit.com/node-js-interview-questions
https://www.interviewbit.com/cpp-interview-questions
https://www.interviewbit.com/oops-interview-questions
https://www.interviewbit.com/devops-interview-questions
https://www.interviewbit.com/machine-learning-interview-questions
https://www.interviewbit.com/docker-interview-questions
https://www.interviewbit.com/mysql-interview-questions
https://www.interviewbit.com/css-interview-questions
https://www.interviewbit.com/laravel-interview-questions
https://www.interviewbit.com/asp-net-interview-questions
https://www.interviewbit.com/django-interview-questions
https://www.interviewbit.com/dot-net-interview-questions
https://www.interviewbit.com/kubernetes-interview-questions
https://www.interviewbit.com/operating-system-interview-questions
https://www.interviewbit.com/react-native-interview-questions
https://www.interviewbit.com/aws-interview-questions
https://www.interviewbit.com/git-interview-questions
https://www.interviewbit.com/java-8-interview-questions
https://www.interviewbit.com/mongodb-interview-questions
https://www.interviewbit.com/dbms-interview-questions
https://www.interviewbit.com/spring-boot-interview-questions
https://www.interviewbit.com/power-bi-interview-questions
https://www.interviewbit.com/pl-sql-interview-questions
https://www.interviewbit.com/tableau-interview-questions
https://www.interviewbit.com/linux-interview-questions
https://www.interviewbit.com/ansible-interview-questions
https://www.interviewbit.com/java-interview-questions
https://www.interviewbit.com/jenkins-interview-questions

